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Abstract. We consider the quantum mechanics coupled to the gauge field which 
has the Chem-Simons term as the action. The generalized Hamiltonian formalism 
of the system is constructed and canonical and path-integral quantizations are per- 
formed. In solving the Gauss law constraint, the gauge field is represented by a 
multivalued function and the charge density operator of the particle. The gauge 
potential is singular and also induces a singular magnetic field though the magnetic 
flux is finite. By a phase transformation, the singular gauge field is eliminated. Then 
the transformed wavefunction absorbing the gauge field induces a novel phase factor 
under 2n-rotation in space. Thus we show that the transformed wavefiinction de- 
scribes exotic spin state. The extension of these analyses to the relativistic case is 
also presented. 

1. Introduction 

The Chern-Simons term is making a strong impact on physics [l]. Several types of 
quantum field theories with the Chern-Simons term in action [2] have been investi- 
gated up to  now. Recently, Dzyaloshinski e l  a1 and Polyakov e2 a1 [3,4] analysed 
the CP1 model with the Chern-Simons term as the action of the hidden U (  1) gauge 
field, which might be an effective theory explaining high-T, superconductivity phe- 
nomena [5]. On the other hand, Witten [6] has investigated the quantum field theory 
with the pure Chern-Simons term, which gives a field-theoretical framework to  under- 
stand knot theory. Stimulated by these works, many investigations of quantum field 
theories with the Chern-Simons term have appeared. 

The spin and statistics in (2+1) dimensions have a specific feature. We cannot 
completely determine them from the algebra of the angular momentum operator. 
There remains an ambiguity in the representation of the operator algebra because the 
algebra has the nature of the Abelian group. It may allow us to expect the appearance 
of unusual spin and statistics in (2+1)-dimensional quantum theories. Some years ago, 
Wilczek specified that  such exotic spin and statistics appeared in quantum mechanics 
under suitable background fields [7]. Such an exotic state is called an anyon. After 
that ,  some analyses appeared [8] and some interesting physics has been pointed out [9]. 

In the paper by Polyakov [4], the phenomenon called Bose-Fermi transmutation 
is presented in the elegant path integral formalism, where the CP’ model with the 

t Present address: Depertment of Physics, Nara University of Education, Takabatake-cho, Nara 630, 
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Chern-Simons term as the action of the gauge field is treated. Before that ,  Wilczek 
and Zee [lo] considered the CP' model with the Hopf term and showed that the 
soliton discovered by Belavin and Polyakov [l l]  has exotic statistics. The model of 
Folyakov is the low-energy effective theory of the model of Wilczek and Zee. 

Before and since then, there have been some interesting works related to  the above. 
In the procedure of canonical quantization, the O(3) nonlinear CT model with the Hopf 
term, the massive scalar theory with the Chern-Simons term and the CP1 model 
with the Chern-Simons term have been discussed [12]. These topological terms are 
considered as the Wess-Zumino term in (2+1) dimensions [13]. Relations between 
Polyakov's regularization [4], the anyon and the braid group have been discussed [14]. 
In the connection with the statistical model, it has been investigated as to  how the 
topological term can be induced from the antiferromagnetic Heisenberg model or the 
Hubbard model in the long-wavelength limit [15]. The importance of the role of the P- 
and T-violating term has been specified [16]. The analyses of several types of quantum 
field theories with the Hopf term or the Chern-Simons term are now in progress [17]. 

We have investigated the fermion-coupled CP1 model with the Chern-Simons 
term [18]. It has been shown that the statistics of each matter field has been trans- 
muted to  an exotic one by investigating the canonical commutator algebra. The same 
result has also been obtained in the generic U ( l )  gauge field theories which have the 
Chern-Simons term as the action of the gauge field, without specifying the detail of 
the matter fields [19]. A similar analysis has also been carried out in the context of 
motivating the bosonization in (2+1) dimensions [20]. 

In this paper, we investigate quantum mechanics in which the gauge field has 
the Chern-Simons term as the action. We construct the generalized Hamiltonian 
formalism of the theory and quantize it by using the canonical and path-integral 
methods. The Gauss law constraint is solved and the gauge field is represented by 
using a multivalued function and the charge density operator of the particle. The 
gauge field is singular and also gives a singular magnetic field, although the magnetic 
flux is finite. We eliminate the singular gauge field by phase transformation of the 
wavefunction. We then show that  the transformed wavefunction induces a novel phase 
factor under the rotation in two-dimensional space. Thus the state described by the 
transformed function has the exotic spin. Further we extend these analyses to  the case 
of the relativistic particle and show that the exotic spin state appears in this case. 

One of our aims is to  make clear the essential feature of the appearance of the 
exotic spin state and the Bose-Fermi transmutations in the rather simplified model. 
How is it derived? We also hope that the model will be of use in a realistic system. 
The model can be used to  describe a system where field-theoretical effects such as 
vacuum polarization, are not important. The model also gives an example of the 
system including anyons [7]. Part  of our results has already been reported [21]. 

This paper is organized as follows. In section 2,  we formulate the generalized 
Hamiltonian formalism and the canonical and path-integral quantizations are pre- 
sented. In section 3,  we show that the exotic spin state appears in the system. The 
extension to  the relativistic case is given in section 4 .  Section 5 is devoted to  discussion 
and conclusions. 

2. Generalized Hamiltonian formalism and quantizations 

In this section, we set up the consistent quantum mechanics coupled to  the U ( l )  
gauge field, which has the Chern-Simons term as the action. Following the Dirac 
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algorithm [22], the generalized Hamiltonian system is constructed and then we quan- 
tize it canonically. The path-integral expression is also given following the Faddeev- 
Senjanovic formula [23]. 

2.1. Dirac Formalism 

The Lagrangian of the non-relativistic particle coupled to  the U( 1)  gauge field with 
the Chern-Simons term as the action is given by 

(2.1) 

J m 
L = - T q i ( t ) j  ' ( t )  + d z  {eAo(t ,  z)6(z - q) + eAi ( t , z )6 ( z  - q)qi 

+ OEPYPAP(t, z)a,A,(t, z) 

where m is the mass of the particle and e is the gauge coupling constant. 
The last term in (2.1) is the so-called Chern-Simons term. 0 is a parameter which 

plays an important role in subsection 3.2. The dot denotes the time derivative. From 
the Lagrangian (2.1),  we can derive the Euler-Lagrange equations, 

mqi - eFoi - eFji$ = 0 (2.2a) 

2 0 ~ ~ ~ ~ 8 , A ~  + e g o p 6 ( z  - q) + e g i P 6 ( z  - q)qi = 0 (2.26) 

where FOi = dA,/dt - 8Ao/8q' and Fji = 8Ai/8G - 8Aj/8q'. 
We consider q' (i = 1,2)  and AP((t ,z)  ( p  = 0 , 1 , 2 )  as the dynamical variables. 

The short-hand notation AP(t,q) may be used. We then recognize it as . 4 p ( t , q )  = 
J d z  AP(t, z)6(z - q).  Further, we omit the time variable t from the argument where 
there can be no confusion. 

The canonical momenta for them are 

Equation (2.3a) gives the velocity by the momentum as 

i' = ---(pi 1 - eA' (q ) ) .  

( 2 . 3 ~ )  

(2.3b) 

Equation (2.36) shows that there is the primary constraint 

where the weak equality is recognized as usual [22]. The Poisson bracket for the 
dynamical variables are defined as 

(2.6a) 

(2.66) 
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By the Legendre transformation, the canonical Hamiltonian is obtained formally as 

H ,  = qipi + d y A p I I p  - L 

1 
2m 

J 
- - - -(pi - eA'(q))(pi - eAi(q)) - eAo(q) - /dyAo28EoijaiAj.  

(2.7) 

Now, following Dirac's prescription, we construct the consistent Hamiltonian for- 
malism. At first we prepare the primary Hamiltonian, 

which includes the primary constraint (2.5) with the Lagrange multiplier U We 
require the  consistency condition tha t  a constraint is not time-evolved by the primary 
Hamiltonian H p .  This condition might (i) be satisfied, or (ii) determine a part  of the 
multipliers, or (iii) induce a new constraint. In case (iii), we require the consistency 
for the new constraint again and continue this algorithm until all constraints reduce 
to  case (i) or (ii). We then can find the consistent Hamiltonian system which gives 
the evolution of the dynamical variables in the true phase space. 

p :  

The consistency condition for @' is 

where the Poisson brackets (2.6) are used. 
constraint 

When p = 0,  we have the secondary 

which is the Gauss law constraint and plays a important role in subsection 3.1.  When 
p = k (= 1 , 2 ) ,  the condition is 

e 
m 

- -(pk - eAk(q))6(z  - q)  - 2&0"kdiAo(z) - 28eokju, M 0 (2.10) 

which determines u j  . 
Next we consider the consistency condition for +:2, 

From this, we obtain 

e d - -(pi - eA'(g)) -b(z - q) + 2 8 ~ ~ ' j d ~ u ~  M 0 
m aqi 
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Table 1. The Poisson brackets among the constraints. 

which is satisfied if (2.10) is used. Therefore q5f2] is consistent. 
Now we obtain the consistent set of the constraints (2.5) and (2.9).  These con- 

straints are classified into first- and second-class constraints. First-class constraints 
are those where the Poisson brackets with all other constraints vanish. Second-class 
constraints are all others. The  Poisson brackets between each constraint are given by 
table 1.  

From table 1 ,  we find that 4' is the first-class constraint and all others are second- 
class ones. The  number of second-class constraints is three, i.e. an  odd number, so 
t ha t  all the second-class constraints are not independent. We modify the Gauss law 
constraint taking the  linear combination among the second-class constraints as 

(2.12) 
1 

28 
( c - y  = --E0"'6(w1 - W 2 ) .  

G becomes the first-class constraint and the remaining second class constraints are q5' 
and d2. 

At this stage, we construct the Dirac brackets which are defined as 

for any variables A ( z )  and B(y). Using the Dirac brackets, all the second-class con- 
straints become the strong equations. After some calculations, we obtain 

(2.13a) 

(2.136) 
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Now our system is described by the total Hamiltonian 

(2.15) 

where we have used the strong equations and redefined U as A ,  + v + U. We have ob- 
tained the consistent generalized Hamiltonian formalism of the non-relativistic particle 
coupled to  the U(1) gauge field which has the Chern-Simons term as the action. 

2.2. Canonical quantization 

We have obtained the generalized Hamiltonian formalism for our system. The Dirac 
brackets are given by (2.13) and (2.14). The total Hamiltonian is (2.15) with the 
first-class constraints 4' and r+4y2]. 

Let us quantize this system canonically. The Dirac brackets are replaced by the 
equal-time commutation relations. 

Therefore we have 

In the above system, two first-class constraints remain. In order to  restrict the 
system on the true phase space, we have to impose a subsidiary condition on the 
system. The condition should be chosen as satisfying an admissible condition. Thus 
det {do,  q5e2), f l  , f2}D # 0, where f l  and f 2  are the subsidiary conditions. The bracket 
{4', 4r,),flr f 2 ) D  means the matrix whose elements are the Dirac brackets among 
do, 0y2 and f l ,  f,. The admissible condition guarantees that the subsidiary conditions 
are in ependent of the first-class constraints and give the restriction on the true phase 
space. As an example, we adopt 

fl = d,A' zz 0 

f, = 2Bd,6"AA, + - ~ k j d t 6 ( ~  - q)(p' - " ' ( q ) )  x 0. 

(2.18) 

(2.19) 
e 
m 

f l  is the Coulomb gauge fixing condition and f 2  is determined as f l  is consistent with 
the Euler-Lagrange equation (2.26). These conditions restrict the dynamical variables 
to the physical ones. 
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2.9. Path-integral quantization 
Based on the generalized Hamiltonian formalism presented before, we can perform the 
path-integral quantization following the Faddeev-Senjanovic method [23]. 

The partition function is given by 

= N dqk dpk dAp drip s ( ~ o ) ) s ( ~ ~ ~ ~ ) s ( f ~ ) s ( f Z )  det{40, 4 f Z ) r  fll f Z ) D  

x 6(4')wJ2)det{4' ,  
J 

x exp [i (J dt pipi + 1 d3z Apnp - dt H c ) ]  (2.20) 

where N is a normalization factor. We can evaluate {4', 4fz), f l l  f2}D and the result 
is given in table 2. The determinant of the matrix is independent of the dynamical 
variables and is included in the normalization factor N .  The matrix { 4 ' ,  @}p can be 
found from table 1 omitting 4(') and + f 2 ) .  It also does not depend on the dynamical 
variables so that i t  is included in the normalization factor N .  On further performing 
a part of the functional integration, equation (2.20) reduces to the formula 

= dqk dpk dAi 6(2B&'jaiAj(z) + eb(z - q))6(aiA'(z)) J 

+ 8 / d3z &"jAiAj , 11 (2.21) 

In (2.21), if we exponentiate the &function representing the Gauss law constraint, we 
obtain the Chern-Simons term in the action. Further we can obtain the covariant 
expression by using the Faddeev-Popov trick, passing to  a covariant gauge fixing 
condition. 

Table 2. The Dirac brackets among the first-class constraints and the gauge fixing 
conditions. 

3. Exotic spin state 

We show that the non-relativistic particle coupled to  the Chern-Simons term can 
have an exotic spin state. We solve the Gauss law constraint. The vector potential 
is represented by using a multivalued function and the charge density operator of 
the particle. This is eliminated by rotating a phase of the wavefunction. Then the 
transformed wavefunction shows exotic behaviour under the operation of the angular 
momentum operator. So an exotic spin state appears in the system. 
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3.1.  Gauss law constraint 

The Gauss law constraint is given by 

26&'1a,Aj = J o  

where the charge density operator of the particle is defined as 

J o  = -e6(z - q ) .  

In addition, we have the gauge fixing condition 

a j A J  = 0. 

We solve equations (3.1) and (3.3). 
At first, (3.3) g' Ives us 

Aj = &jkakc$ 

using a scalar function 4. Substituting it into (3.1),  we obtain 

1 
26 

aia'4 = -- J o  

which is the Poisson equation in two dimensions. The equation is solved as 

Q = -- d y  --In 12 - yI2 + constant Jo (y ) .  
26 ' J  (6, ) 

So substituting this result into (3.4), we have 

(3.4) 

(3.5) 

(3.7) 

Equation (3.7) is further rewritten in the form of the total divergence. We intro- 
duce an angle variable between the vector z - y and the first axis in two-dimensional 
space, i.e. 

1 2  - y 2  
t a n R ( z  - y)  = II_. 

Y 
Then the relation 

gn(2 - y) = -&Jk- (x - Y)k  

Iz - YI2 
(3.9) 

holds and using i t ,  (3.7) becomes 

e dY O(z - Y)JO(Y). (3.10) 

Here we should comment on the singularity when we set z to  q in Aj(z ) .  The  
charge density operator J o  contains 6(z - q)  so that  A j ( q )  is singular. To avoid this 
difficulty, we regulate the charge density operator as 

4ne l J  
A J ( z )  = -- 

1 
2as 

J o ( z )  + J0(z;&) = -eb,(z - q)  = -e- exp[-(z - (3.11) 

We recognize that J0(z;&) is used when A j ( q )  appears, without referring to  this 
situation explicitly. 
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3.2. Exotic spin state 

The Schrodinger equation of our system is written as 

(3.12) 
- - 1 ( - i 7  a - e A i ( q ) )  (-i- a - eAi(q)  

2m aq aqi 

where + is the energy eigenstate. The vector potential A ’ ( q )  is represented by using 
the charge density operator as specified by (3.10) with the regularization (3.11). The 
magnetic field obtained from A’(q)  is 

using (3.1). This is singular everywhere in space. The magnetic flux is 

which is finite. The appearance of the singular vector potential means that the con- 
figuration space of the system has a non-trivial structure. We can expect a kind of 
Aharonov-Bohm effect. We can describe the system introducing a multivalued wave- 
function absorbing the singular gauge potential by a phase transformation. The trans- 
formed wavefunction may describe an exotic state having unusual statistics, which will 
be presented below. 

Consider eliminating A’(q)  by changing the phase of the wavefunction as 

where the new wavefunction is denoted by the hat symbol. The elimination is achieved 
when the angle 0 satisfies 

a 
8% 
-0(q) = eAi(q) .  

Comparing (3.14) with (3.10), we find that 

(3.14) 

(3.15) 

The Schrodinger equation (3.12) then becomes the term of the free equation which is 
satisfied with the transformed wavefunction $ ( q ) .  We should note that this theory is 
not free because the wavefunction is the multi-valued one. 

Now we show that the wavefunction 3 describes the exotic spin state. We consider 
the 27-rotation of 4 in space. In general, if a wavefunction describes a bosonic state, 
then it does not induce any phase under the 27-rotation and returns back to  the 
original one after the 27-rotation. But if a wavefunction corresponds to  a fermionic 
state, the wavefunction changes its sign after the 27-rotation. Further if there appears 
any non-trivial phase under the 27-rotation, the wavefunction describes the exotic spin 
state. We show that  this is the case for the wavefunction d. 
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For this purpose, we consider the rotation operator which is applied to  the wave- 
function in two space dimensions. The rotation operator is defined by 

~ ~ ( 4 )  = e-i+L (3.16) 

where 4 is the rotation angle and L is the angular momentum operator defined by 

L = &'J g i p ] .  (3.17) 

Under the operation of UR(4), the wavefunction $ behaves as 

$'(q) = UR(4)$(q) (3.18) 

where $'(Rq) = $(q). R is the 2 x 2  matrix 

cos4 - s i n 4  
s i n 4  c o s 4  

R =  ( (3.19) 

representing the two-dimensional rotation. 
Suppose that the wavefunction $(q)  included in the Schrodinger equation (3.12) 

is the bosonic field. It can be chosen as the eigenstate of the angular momentum 
operator L with an integer eigenvalue. Thus 

with an integer 1 specifying the quantum number of the angular momentum. For the 
2~-rotat ion 

so that there is no phase factor as expected. 

rotation of the wavefunction G(q)  is given by 
Let consider the case of the wavefunction q(q) .  In the same way as (3.20), the 

q'(q) = UR(4)6(q) 

where 4 is defined in (3.13). We evaluate this as 

(3.21) 

where we have used the relation 

UR (4 f (q)  (4) - = f ( Rq). 

Now we find the typical feature of the phase O(q) in evaluating O(Rq). Using (3.15) 
with (3.11), we have 

(3.23) 
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where we change the integration variable as y = Ry’ and use the relation, RTR = 1 
and det R = 1. We notice that R(Rg - Ry’) = R(g - y’) + 4. We then obtain 

(3.24) 

Substituting (3.24) into (3.22), we have 

Especially, we choose the eigenstate of the angular momentum operator L with the 
eigenvalue 1 as the wavefunction. Then 

(3.26) 

Here we have arrived at the important expression. The  novel phase factor 
exp[-i4(e2/4ne)] appears in addition to the usual phase factor For the 2n- 
rotation, we have 

This is just  the evidence of the exotic spin. Typically we can realize the following 
cases: 

1. If e2/28 = 2 n r ,  3, is bosonic. 
2. If e 2 / 2 ~  = (2n + I)., 4, is fermionic 

Here n is an  integer. The  other parameter corresponds to  the anyon [7]. We should 
note that case (2) realizes the Bose-Fermi transmutation in quantum mechanics. 

4. Relativistic case 

We can extend the previous analyses to the relativistic case. Thus  the relativistic 
particle coupled to the U(1)  gauge field which has the Chern-Simons term as the 
action is considered. T h e  discussions are parallel to the previous ones so tha t  we 
present the results briefly. 
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4.1. Dirac formal i sm 

The starting Lagrangian is 

L = -m(l  + i i 2 i ) l / 2  + / d z  {AO(z)6(z - z )  + eAi(z)6(z - z ) i i  + Od'"PA,a,A,}. 

(4.1) 

In general, the Lagrangian for the relativistic particle has invariance under the general 
coordinate transformation. In (4.1), we have already fixed the gauge degree of freedom 
by imposing zo = zo = 2 .  The dot denotes the time derivative. 

The Euler-Lagrange equations are obtained as 

and 

8 ~ " ~ ~ a , A ,  + egoV6(z - z )  + egiY6(z - z ) i i  = 0. 

The canonical momenta are 

Equation (4.5) gives the primary constraint 

4' E ll' - O E " ~ ' A ~  0. 

The Poisson brackets are defined as 

By the Legendre transformation, we obtain the canonical Hamiltonian 

Hc = [m 2 - ( p i  - eAi(r))(pi  - ~ A ' ( Z ) ) ] ' / ~  - eAo(z) - 28 /dyEijAoaiAj 

Now, starting from the primary Hamiltonian 

Hp = H ,  + J d y u p # p  

with the Lagrange multiplier up,  we construct the consistent Hamiltonian system. The 
requirement of the consistency condition induces the additional constraint 

$?21 = e6(z - z) + 28&'jdiAj x 0 (4.9) 

which is the Gauss law constraint. Equations (4.6) and (4.9) are all of the constraints. 
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After this point, the analysis is the same as for the non-relativistic case. We evalu- 
ate the Poisson brackets among the constraints. The result is the same as table 1. We 
classify the constraints into first- and second-class ones. The second-class constraints 
are not independent of each other. The Gauss law constraint is modified by the lin- 
ear combination with all of the other second-class constraints so that it becomes the 
first-class constraint. We compose the Dirac brackets for the dynamical variables. We 
then arrive at the system described by the total Hamiltonian 

H ,  = [m2 - ( p i  - eAi(r))(pi - eAi(z))]"' + dy(za4' + tyf~("~,) (4.10) 1 
and the Dirac brackets 

(4.1 l a )  

(4.11 b )  

(4.11d) 

(4.12) 

4.2. Canonical quantization 

As in subsection 2.2,  we obtain the equal-time commutators from the Dirac brackets 
(4.11) and (4.12). The same admissible subsidiary conditions (2.18) and (2.19) are 
chosen. The situation is the same as the non-relativistic case given in subsection 2.2,  
except for the total Hamiltonian (4.10). 

4.3. Pat h- int egral qu ant irat ion 

The path-integral expression also is obtained in the same manner as in subsection 2.3. 
The constraints and the gauge fixing conditions are the same as the non-relativistic 
case. Thus, we have the partition function 

2 = dt ,  dp, dAi 6(26eijd,Aj(z) + e 6 ( z  - z ) ) 6 ( d i A i ( z ) )  J 
x exp[i(/dt  { ; , p i  - [7n2 - ( p i  - e A i ( r ) ) ( p i  - ~ A ' ( Z ) > ] ' / ~ }  

+ e d3z E ~ ~ ~ A ~ A ~  / (4.13) 

Of course, this relativistic expression reduces to (2.12) in the non-relativistic limit. 

4.4. Exotic spin state 

The presence of the exotic spin state is also found in the same way as in section 3. 
Solving the Gauss law constraint, the gauge field is expressed by using the multivalued 
function and the charge density operator of the particle. The root of the quantum 
operator should be understood as it is given by the Taylor series expansion. The 
gauge field can be eliminated by changing the phase of the wavefunction. Then the 
transformed wavefunction describes the exotic spin state. 
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5. Conclusion and discussion 

We have considered the quantum mechanics coupled to  the U( 1) gauge field which has 
the Chern-Simons term as the action. Following Dirac’s prescription, the generalized 
Hamiltonian formalism has been constructed. The system has been quantized by using 
the canonical and path-integral methods. We have solved the Gauss law constraint 
and represented the gauge field by the multivalued function and the charge density op- 
erator of the particle. This gauge field has been eliminated by transforming the phase 
of the wavefunction. We then have shown that the transformed wavefunction describes 
the exotic spin state. Thus under the 2n-rotation of the wavefunction in space, there 
appears the novel phase factor. Especially if we choose the physical parameters as sat- 
isfying the condition e2/28 = (2n + l)n, the originally bosonic wavefunction becomes 
fermionic. This is the quantum mechanical version of the Bose-Fermi transmutation. 
The other parameter region corresponds to  the anyon. 

The same analyses have been done in the case of the relativistic particle coupled 
to the U( 1) gauge field with the Chern-Simons term as the action and the exotic spin 
state has been found in the system. 

The essential point is that the gauge field with the Chern-Simons term as the 
action is represented by using the charge density operator of the particle and the 
multivalued function which appears in solving the Gauss law constraint. The gauge 
field does not have the true dynamical degree of freedom and is represented as a 
singular vector potential. The corresponding magnetic field is also singular though 
the magnetic flux is finite. These singular behaviours mean that the configuration 
space of the dynamical variables has non-trivial structure, which is a multi-connected 
space. Thus we may say that the inclusion of the Chern-Simons term can induce a 
kind of magnetic field, which may be singular, in the context of the quantization. This 
situation is naturally expected. The Chern-Simons term is the parity breaking term 
and may give the magnetic field. The singular gauge field can be absorbed in the 
wavefunction by the phase rotation. The rotated wavefunction becomes a multivalued 
function and describes the exotic spin state. 

The Chern-Simons term in our model may be considered as a correspondence of 
a kind of long-range order in a statistical model, which might be a more fundamental 
model of our model. The transformed wavefunction may be the effective wavefunction 
adopting such a long-range order. If we can realize the situation where the long-range 
order becomes dominant, we can see the exotic behaviour which is well described by 
the transformed wavefunction. Probably, it would be realized in the real physical 
world as a macroscopic quantum effect. 

Based on the analysis presented in this paper, we can proceed with further inves- 
tigations by application to the real physical system. More extended analysis has been 
carried out, which will appear elsewhere [24]. 
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Note a d d e d  in proof. After this work was completed, we were informed of the preprint. [25], in which 
the multiparticle system coupled to the Chem-Simons term w a s  analysed by using the RPA method. 
The extension of our study to the multiparticle system is straightforward. In our work, the basis 
of the quantization of the system is given and the kinematical nature is clarified and, further, the 
relativistic case is discussed. 
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